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Riemannian Geometry and Multilinear Tensors 
with Vector Fields on Manifolds 
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Abstract-In the paper some aspects of Riemannian manifolds, pseudo-Riemannian manifolds, Lorentz manifolds, Riemannian metrics, 
affine connections, parallel transport, curvature tensors, torsion tensors, killing vector fields, conformal killing vector fields are focused. The 
purpose of this paper is to develop the theory of manifolds equipped with Riemannian metric. I have developed some theorems on torsion 
and Riemannian curvature tensors using affine connection. A Theorem 1.20 named “Fundamental Theorem of Pseudo-Riemannian 
Geometry” has been established on Riemannian geometry using tensors with metric. The main tools used in the theorem of pseudo 
Riemannian are tensors fields defined on a Riemannian manifold.  
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——————————      —————————— 

I. Introduction 

Riemannian manifold is a pair (𝑀, g) consisting of smooth 
manifold 𝑀 and Riemannian metric g. A manifold may carry a 
further structure if it is endowed with a metric tensor, which is a 
natural generation of the inner product between two vectors in 
ℝ𝑛  to an arbitrary manifold. Riemannian  metrics, affine 
connections, parallel transport, curvature tensors, torsion tensors, 
killing vector fields and conformal killing vector fields play 
important role to develop the theorem of Riemannian manifolds. 
 
II. Riemannian manifolds 
  
A manifold is a topological space which locally looks like ℝ𝑛 . 
Calculus on a manifold is assured by the the existence of smooth 
coordinate systems. Indeed, Riemannian manifold is the 
generalization of Riemannian metric with smooth manifold. 
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Definition 1.01 𝑀 is an n-dimensional differentiable manifold if 
 

(a) 𝑀 is a topological space, 
 

(b) 𝑀 is provided with a family of pairs {(𝑈𝑖 ,𝜑𝑖)},  
 

(c) {𝑈𝑖} is a family of open sets which covers 𝑀, that is, 
⋃ 𝑈𝑖𝑖 = 𝑀.  

 

(d) 𝜑𝑖 is a homeomorphism from 𝑈𝑖 onto an open subset 𝑈𝑖′ of  
ℝ𝑛. 

 

 

(e) Given  𝑈𝑖 and  𝑈𝑗 such that  𝑈𝑖 ∩  𝑈𝑗 ≠ ∅, the map 𝜓𝑖𝑗 =
𝜑𝑖 𝜑𝑗−1 from  𝜑𝑗(𝑈𝑖 ∩  𝑈𝑗) to 𝜑𝑖( 𝑈𝑖 ∩  𝑈𝑗)  is infinitely 
differentiable.  

 
Example 1.02 The Euclidean space ℝ𝑚 is the most trivial 
example, where a single chart covers the whole space and 𝜑 may 
be the identity map. 
 
Definition 1.03 Let 𝜑𝑖 ∶  𝑈𝑖 → ℝ𝑛 be a homeomorphism from an 
open subset 𝑈𝑖 into ℝ𝑛 . Then the pair (𝑈𝑖 , 𝜑𝑖) ) is called a chart. 
 
Definition 1.04 [1] Let 𝑀 be a differentiable manifold. A 
Riemannian metric g on 𝑀 is a type (0, 2) tensor field on 𝑀 
which satisfies the following axioms at each point  𝑝 ∈ 𝑀 
 
(a) g𝑝(𝑈,𝑉) =  g𝑝( 𝑉,𝑈) 

 
(b) g𝑝(𝑈,𝑈) ≥ 0  where the equality holds only when 𝑈 = 0. 

 
Here  𝑈,𝑉 ∈ 𝑇𝑝𝑀 and g𝑝 = g|𝑝.In short g𝑝 is a symmetric 
positive definite bilinear form and 𝑇𝑝𝑀 is a tangent space of 
manifold 𝑀 at a point 𝑝. 
 
Definition 1.05 Let 𝑀 be a differentiable manifold. A Riemannian 
metric g on 𝑀 is a pseudo-Riemannian metric if it satisfies the 
conditions (𝑖) and (𝑖𝑖) and if g𝑝(𝑈,𝑉) = 0 for any 𝑈 ∈ 𝑇𝑝𝑀, 
then 𝑉 = 0. 
 
Definition 1.06 If g is Riemannian matric, all the eigenvalues are 
strictly positive and if g is pseudo-Riemannian some eigenvalues 
are negative. If there are 𝑖 positive and 𝑗 negative eigenvalues, 
then the pair (𝑖, 𝑗) is called the index of metric. If 𝑖 = 𝑗, the metric 
is called a Lorentz metric.  
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Definition 1.07 Let (𝑀, g) is Lorentzian. The elements of  𝑇𝑝𝑀 
are divided into three classes as follows 
 
(a) g(𝑈,𝑈) > 0 → 𝑈 is spacelike, 

 
(b) g(𝑈,𝑈) = 0 → 𝑈 is lightlike, 
 
(c) g(𝑈,𝑈) < 0 → 𝑈 is timelike. 

 
Definition 1.08 [2] If a smooth manifold 𝑀 admits a Riemannian 
metric g, the pair (𝑀, g) is called a Riemannian manifold. If g is a 
pseudo-Riemannian metric, then (𝑀, g) is said to be a pseudo-
Riemannian manifold. If g  Lorentzian, (𝑀, g) is called a Lorentz 
manifold. 
 
Example 1.09 An  𝑚-dimensional Euclidian space (ℝ𝑚,𝛿) is 
Riemannian manifold and an 𝑚-dimensional Minkowski space 
(ℝ𝑚, 𝜂) is a Lorentz manifold. 
 
III. Affine connection and covariant derivative  
 
A vector 𝑋 is a directional derivative acting on 𝑓 ∈ ℱ(𝑀) 
as 𝑋 ∶ 𝑓 → 𝑋(𝑓). However, there is no directional derivative 
acting on a tensor field of type (𝑝,𝑞) which arises naturally from 
the differentiable structure of  𝑀. What we need is an extra 
structure called the connection, which how tensor are transported 
along a curve.  
 
Definition 1.10 [3]  Let  𝑀 be a smooth  𝑛-dimensional manifold, 
ℱ(𝑀) be the set of smooth functions and 𝔛(𝑀) be the vector 
space of smooth vector fields. An affine connection on  𝑀 is a 
map which is denoted by  𝛻 and defined by 
  
 𝛻 ∶  𝔛(𝑀)  × 𝔛(𝑀)   → 𝔛(𝑀)  
  
                     ( 𝑋 ,𝑌 )   ↦ 𝛻𝑋  𝑌  
 

Such that          

(a) 𝛻𝑋  (𝑌1 + 𝑌2) =  𝛻𝑋𝑌1  + 𝛻𝑋𝑌2 
 

(b) 𝛻𝑋1+𝑋2  𝑌 =  𝛻𝑋1𝑌 + 𝛻𝑋2𝑌 
 
(c) 𝛻𝑋  (𝑓 𝑌) =  𝑋(𝑓) 𝑌 + 𝑓  𝛻𝑋𝑌       

 
(d) 𝛻𝑓 𝑋𝑌 = 𝑓 𝛻𝑋𝑌,    

 
  ∀ 𝑓 ∈ ℱ(𝑀) and  𝑋 ,𝑌 ∈ 𝔛(𝑀). 
 
Definition 1.11 Let (𝑈,𝜑) be a coordinate chart on a manifold 
𝑀 with a coordinates (𝑥1,𝑥2, … , 𝑥𝑛). The functions Γi jk(𝑥) are 
called coordinate symbols of the affine connection  𝛻. Here  
Γi jk(𝑥) is a  𝑛3 function, where  𝑖, 𝑗 = 1 ,𝑛�����. 
 
Definition 1.12 The vector field  𝛻𝑋  𝑓 is often called covariant 
derivative of vector field 𝑓 ∈ ℱ(𝑀)  along the vector field  𝑋. It is 
to define the covariant derivative of 𝑓 by the ordinary directional 
derivative, 
 

 𝛻𝑋  𝑓 = 𝑋(𝑓). 
  
For any 𝑓, 𝑌, it can be defined as follows 
 

 𝛻𝑋  (𝑓 𝑌) =  (𝛻𝑋 𝑓)𝑌 + 𝑓  𝛻𝑋 𝑌. 

 
Definition 1.13 Let 𝑇1  and 𝑇2 be two tensor fields. Then the 
covariant derivative  𝛻𝑋 along the field 𝑋 is defined as follows 
 

 𝛻𝑋  (𝑇1⨂𝑇2) =  (𝛻𝑋  𝑇1)⨂𝑇2 + 𝑇1⨂(𝛻𝑋 𝑇2). 
 
IV. Parallel Transport 
 

Given a curve in a manifold 𝑀, we may define the parallel 
transport of a vector along the curve. In geometry, parallel 
transport is a way of transporting geometrical data along smooth 
curves in a manifold. If the manifold is equipped with an affine 
connection, then this connection allows one to transport vectors 
of the manifold along curves so that they stay parallel with 
respect to the connection.  
  
Definition 1.14 Let 𝑀 be a smooth 𝑛-dimensional manifold 
equipped with an affine connection  𝛻. Let  𝛾: (𝑎, 𝑏) → 𝑀 be a 
smooth curve. A vector field on  𝛾(𝑡), 𝑋(𝑡) is called parallel 
transport if the following equation is satisfied  
 
 𝛻𝛾̇(𝑡) 𝑋(𝑡)  =  0,        ∀  𝑡 ∈ (𝑎, 𝑏).     
  
Here 𝛾̇(𝑡) is the tangent vector to  𝛾(𝑡)  at the point 𝑡. 
 
Theorem 1.15 [4] Let 𝛾: (𝑎, 𝑏) → 𝑀 be a smooth curve on a 
manifold  𝑀. For each 𝑡0 ∈ (𝑎,𝑏)  and for each  𝑋0 ∈  𝑇𝛾(𝑡0)𝑀 , 
prove that there exist a unique vector field  𝑋(𝑡) on  𝛾(𝑡) such 
that  
 
(a) 𝑋(𝑡) is parallel, 
 
(a) 𝑋(𝑡0) =  𝑋0. 

 
Proof. Let (𝑈, 𝜑) be a coordinate chart on a manifold 𝑀 at  𝑡0 
with coordinates ( 𝑥1,𝑥2, … , 𝑥𝑛). Then 

 
(a) A smooth curve  𝛾 ∶ (𝑎,𝑏) → 𝑀 is given by a set on 𝑛 

smooth functions       
                          

    

𝑥1  =  𝑥1(𝑡)  
𝑥2  =  𝑥2(𝑡)

:
:

𝑥𝑛  =  𝑥𝑛(𝑡)

  

⎭
⎪
⎬

⎪
⎫

  ⇒   𝑥𝑖 =  𝑥𝑖(𝑡),  

 
where   𝑡 ∈ (𝑎, 𝑏), 𝑖 = 1,2, … ,𝑛 
 

(a) The vector  𝑋(𝑡) is given by 
 

    𝑋(𝑡) =  ∑ 𝑋𝑖𝑛
𝑖=1 (𝑡)  𝜕

𝜕𝑥𝑖
    for 

= 𝑋1(𝑡)  
𝜕
𝜕𝑥1

+ 𝑋2(𝑡)  
𝜕
𝜕𝑥2

  +  

                         ⋯ + 𝑋𝑛(𝑡)  
𝜕
𝜕𝑥𝑛

 .     
 
  Then 𝛾̇(𝑡) is given by  
 

  𝛾̇(𝑡) =  ∑ 𝑑𝑥𝑖

𝑑𝑡
𝑛
𝑖=1   𝜕

𝜕𝑥𝑖
   

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014                                                                                                    159 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org 

          =  𝑑𝑥
1

𝑑𝑡
 . 𝜕
𝜕𝑥1

+ 𝑑𝑥
2

𝑑𝑡
 . 𝜕
𝜕𝑥2

+ ⋯+ 𝑑𝑥
𝑛

𝑑𝑡
 . 𝜕
𝜕𝑥𝑛

 . 
 
Now we have, 
 
𝛻𝛾̇(𝑡) 𝑋(𝑡)  =   𝛻

∑ 𝑑𝑥𝑖
𝑑𝑡

𝑛
𝑖=1   𝑒𝑖 

∑ 𝑋𝑗𝑛
𝑗=1  𝑒𝑗  

 

                  =  ∑ 𝑑𝑥𝑖

𝑑𝑡
𝑛
𝑖=1     𝛻 𝑒𝑖 � ∑ 𝑋𝑗𝑛

𝑗=1  𝑒𝑗�         
                   
                 =  ∑ 𝑑𝑥𝑖

𝑑𝑡
𝑛
𝑖=1  �  ∑ 𝑒𝑖 (𝑛

𝑗=1 𝑋𝑗�
  
𝑒𝑗    

  

                                         + ∑ 𝑋𝑗𝑛
𝑗=1  𝛻𝑒𝑖 𝑒𝑗  ]   

                =  ∑ ∑  [ (𝑛
𝑗=1

𝑑𝑥𝑖

𝑑𝑡
𝑛
𝑖=1  𝑒𝑖𝑋𝑗)𝑒𝑗 + 𝑑𝑥

𝑖

𝑑𝑡
 𝑋𝑗  𝛻𝑒𝑖 𝑒𝑗   

] 

                 =  ∑ ∑  [ (𝑛
𝑗=1

𝑑𝑥𝑖

𝑑𝑡
𝑛
𝑖=1  𝜕𝑋

𝑗

𝜕𝑥𝑖
) 𝜕
𝜕𝑥𝑗

       
 
                                 + 𝑑𝑥

𝑖

𝑑𝑡
 𝑋𝑗  ∑ ⎾𝑖𝑗

𝑘𝑛
𝑘=1 (𝑥) 𝜕

𝜕𝑥𝑘
 ]    

 

              = ∑  𝑛
𝑗=1

𝑑𝑋𝑗

𝑑𝑡
. 𝜕
𝜕𝑥𝑗

  +  ∑ 𝑑𝑥𝑖

𝑑𝑡
𝑛
𝑖,𝑗,𝑘=1  𝑋𝑗  ⎾𝑖𝑗

𝑘 (𝑥) 𝜕
𝜕𝑥𝑘

  

  ⇒  𝛻𝛾̇(𝑡) 𝑋(𝑡)  =   ∑ [ 𝑑𝑋
𝑘

𝑑𝑡
 𝑛

𝑘=1    

                          +  ∑ 𝑑𝑥𝑖

𝑑𝑡
𝑛
𝑖,𝑗=1  𝑋𝑗 ⎾𝑖𝑗

𝑘 (x)] 𝜕
𝜕𝑥𝑘

.  
 
 

Thus the equation for the parallel transport is    
                     

               
𝑑𝑋𝑘

𝑑𝑡
 +  ∑ 𝑑𝑥𝑖

𝑑𝑡
𝑛
𝑖,𝑗=1  𝑋𝑗  Γi jk(𝑥) = 0

 𝑋𝑘(𝑡0) =  𝑋𝑘
0    (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

  �      

 
This is a system of 𝑛-equations for 𝑛-unknown functions 𝑋𝑘(𝑡) 
with 𝑛-initial conditions. A theorem from the theory of 
differential equations says that the solution exists and which is 
unique. This completes the proof of this theorem.   
       
V. Torsion tensor and Riemann curvature tensor 
 

In the mathematical field of differential geometry, the Riemann 
curvature tensor, or Riemannian–Christoffel tensor is the most 
standard way to express curvature of Riemannian manifolds. It 
associates a tensor to each point of a Riemannian manifold that 
measures the extent to which the metric tensor is not locally 
isometric to a Euclidean space.  
  
Definition 1.16 [5] Let 𝑀 be a smooth 𝑛-dimensional 
manifold,  ℱ(𝑀) be the set of smooth functions and 𝔛(𝑀) be the 
vector space of smooth vector fields. A tensor 𝐴 of rank  (1,𝑝) on 
𝑀 is a multi-linear map   
 
 𝐴  ∶  𝔛(𝑀) × 𝔛(𝑀) × … × 𝔛(𝑀)   → ℱ(𝑀)    

 
which satisfies  

𝐴�𝑓 𝑥1,𝑥2, … ,𝑥𝑝� =  𝐴� 𝑥1,𝑓𝑥2, … , 𝑥𝑝� =  ⋯  
 
                              =  𝐴� 𝑥1,𝑥2, … ,𝑓𝑥𝑝� 

 

                              = 𝑓𝐴� 𝑥1,𝑥2, … , 𝑥𝑝� 
 
for any function 𝑓 ∈  ℱ(𝑀) and  𝑥1, 𝑥2, … ,  𝑥𝑝  ∈ 𝔛(𝑀).   
   

Definition 1.17 A torsion  𝑇𝛻 of an affine connection  𝛻,  is a map  
 

  𝑇𝛻 ∶  𝔛(𝑀) × 𝔛(𝑀) → 𝔛(𝑀) 
 
                                   (𝑋,𝑌) ↦  𝑇𝛻 (𝑋,𝑌) 

 
where   𝑇𝛻 (𝑋 ,𝑌) =   𝛻𝑋 𝑌 −  𝛻𝑌 𝑋 −   [ 𝑋,𝑌 ].   
 
Theorem 1.18 For all affine connection  𝛻 , its torson 𝑇𝛻 is a 
tensor of rank  (1, 2). 
  
Proof.  We need to prove that 
𝑇𝛻 (𝑓 𝑋 ,𝑌) = 𝑇𝛻 ( 𝑋 ,𝑓 𝑌 ) = 𝑓 𝑇𝛻 (𝑋 ,𝑌), ∀ 𝑓 ∈ ℱ(𝑀) and 
 𝑋 ,𝑌 ∈ 𝔛(𝑀). 
 
By the definition of torsion, we get  
 

𝑇𝛻 (𝑓 𝑋 ,𝑌) =   𝛻𝑓 𝑋 𝑌 −  𝛻𝑌 𝑓 𝑋 −   [ 𝑓 𝑋,𝑌 ] 
 

                    = 𝑓 𝛻 𝑋 𝑌 −  𝑌(𝑓)𝑋− 𝑓 𝛻𝑌  𝑋 −   [ 𝑓 𝑋,𝑌 ]  
 
           …   …   …   (1.01) 

 
Now take any g ∈  ℱ(𝑀), then  
 
 [ 𝑓 𝑋,𝑌 ]g = 𝑓 𝑋� 𝑌(g)�− 𝑌(𝑓 𝑋(g)) 
  
                = 𝑓 𝑋𝑌(g)− 𝑌(𝑓).𝑋(g)− 𝑓 𝑌𝑋(g) 
 
                = 𝑓 � 𝑋𝑌(g)− 𝑌𝑋(g)� − 𝑌(𝑓).𝑋(g)  
 
                = 𝑓 [𝑋,𝑌]g− 𝑌(𝑓).𝑋(g) 
 
∴ [ 𝑓 𝑋,𝑌 ] =  𝑓 [𝑋,𝑌] − 𝑌(𝑓) 𝑋. 

Therefore, equation  (1.01) becomes 
  
  𝑇𝛻 (𝑓 𝑋 ,𝑌) =  𝑓 𝛻 𝑋 𝑌 −  𝑌(𝑓)𝑋 − 𝑓 𝛻𝑌  𝑋− 𝑓 [𝑋,𝑌]  
 

                                                          +𝑌(𝑓) 𝑋  
                                               
                       =  𝑓 ( 𝛻 𝑋 𝑌−  𝛻𝑌  𝑋−   [𝑋,𝑌] ) 
 
                       = 𝑓 𝑇𝛻 (𝑋 ,𝑌). 

Again, 
 
 𝑇𝛻  ( 𝑋 ,𝑓𝑌) =  − 𝑇𝛻  ( 𝑓𝑌 ,𝑋)       
 

                             [ ∵  𝑇𝛻 (𝑋 ,𝑌) = − 𝑇𝛻 (𝑌 ,𝑋)] 
 

                      = − 𝑓  𝑇𝛻 ( 𝑌 ,𝑋)   [as previous part] 
 
                      = 𝑓 𝑇𝛻 (𝑋 ,𝑌). 
 
Therefore,  𝑇𝛻 is a tensor of rank  (1, 2).                                                                       
 
Hence completes the proof.    
        

Definition 1.19 The curvature tensor  𝑅𝛻, of an affine connection  
𝛻 , is a map 
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 𝑅𝛻 ∶  𝔛(𝑀) × 𝔛(𝑀) × 𝔛(𝑀) → 𝔛(𝑀) 

 
                                                   (𝑋,𝑌,𝑍) ↦  𝑅𝛻 (𝑋,𝑌,𝑍) 

 
 where  𝑅𝛻 (𝑋,𝑌,𝑍) =   𝛻𝑋 𝛻𝑌 𝑍 −  𝛻𝑌 𝛻𝑋 𝑍 −𝛻[ 𝑋,𝑌 ]𝑍. 
 
Theorem 1.20 [6] For all affine connection  𝛻, its curvature  𝑅𝛻  
is a tensor of rank (1, 3). 
  
Proof:  We need to prove that 
 
 𝑅𝛻 (𝑓 𝑋 ,𝑌,𝑍) = 𝑅𝛻  ( 𝑋 ,𝑓 𝑌,𝑍 ) 
 
                          = 𝑅𝛻 ( 𝑋 ,𝑌, 𝑓𝑍 ) 
 

                          = 𝑓 𝑅𝛻 (𝑋 ,𝑌,𝑍);   ∀ 𝑓 ∈ ℱ(𝑀)  and  𝑋 , 𝑌, 𝑍 ∈
𝔛(𝑀). 
By the definition of curvature tensor, we get 

 
 𝑅𝛻 (𝑓 𝑋,𝑌,𝑍)     
     
 = 𝛻𝑓 𝑋 𝛻𝑌 𝑍 −  𝛻𝑌 𝛻𝑓𝑋 −   𝛻[ 𝑓 𝑋,𝑌 ] 𝑍 
 
 = 𝑓 𝛻𝑋 𝛻𝑌 𝑍 − 𝛻𝑌 ( 𝑓 𝛻𝑋 𝑍 )  −  𝛻𝑓[ 𝑋,𝑌 ]–𝑌(𝑓)𝑋 𝑍 
 
 = 𝑓 𝛻𝑋 𝛻𝑌 𝑍 −  𝑌(𝑓)  𝛻𝑋 𝑍 −  𝑓 𝛻𝑌  𝛻𝑋 𝑍 −𝛻𝑓[ 𝑋,𝑌 ] 𝑍  
                                                                                                  +  𝛻𝑌(𝑓)𝑋 𝑍 
  

  = 𝑓 𝛻𝑋 𝛻𝑌 𝑍 −  𝑌(𝑓)  𝛻𝑋 𝑍 −  𝑓 𝛻𝑌  𝛻𝑋 𝑍 −  𝑓 𝛻[ 𝑋,𝑌 ] 𝑍                           
                                                                            +𝑌(𝑓) 𝛻𝑋 𝑍 

 
 = 𝑓  ( 𝛻𝑋 𝛻𝑌 𝑍  −  𝛻𝑌  𝛻𝑋 𝑍 −   𝛻[ 𝑋,𝑌 ] 𝑍  ) 
 
  = 𝑓 𝑅𝛻 (𝑋 ,𝑌,𝑍). 

 
Again, note that    
 
    𝑅𝛻 ( 𝑋,𝑌,𝑍) = −  𝑅𝛻 ( 𝑌,𝑋,𝑍) 

 
Then  
     
 𝑅𝛻 (𝑋, 𝑓 𝑌,𝑍) =  − 𝑅𝛻 (𝑓 𝑌,𝑋,𝑍) 
 
                         =  − 𝑓 𝑅 𝛻 (𝑌,𝑋,𝑍)   [as previous part] 
 
                         = 𝑓 𝑅𝛻 (𝑋 ,𝑌,𝑍). 
 

Also, 
 
 𝑅𝛻 (𝑋,𝑌,𝑓 𝑍) 
 
=  𝛻𝑋 𝛻𝑌 𝑓 𝑍 −  𝛻𝑌 𝛻𝑋 𝑓 𝑍 −   𝛻[ 𝑋,𝑌 ] 𝑓 𝑍  
 

= 𝛻𝑋 (𝑌(𝑓)𝑍 + 𝑓 𝛻𝑌 𝑍 − 𝛻𝑌 ( 𝑋(𝑓).𝑍 + 𝑓 𝛻𝑋 𝑍)  
                 
                                                        −[𝑋,𝑌](𝑓).𝑍  𝑓 𝛻[ 𝑋,𝑌 ]  𝑍          
 

 =  𝛻𝑋 ( 𝑌(𝑓)𝑍 ) + 𝛻𝑋 (𝑓 𝛻𝑌 𝑍 )− 𝛻𝑌 (𝑋(𝑓).𝑍)  
 

 

             −𝛻𝑌 ( 𝑋(𝑓).𝑍)− 𝛻𝑌 (𝑓 𝛻𝑋 𝑍)− [𝑋,𝑌](𝑓).𝑍    
 

                                                             −𝑓 𝛻[ 𝑋,𝑌 ]  𝑍 
 
  =  𝛻𝑋 ( 𝑌(𝑓)𝑍 ) + 𝑌(𝑓) 𝛻𝑋  𝑍 + 𝑋(𝑓)𝛻𝑌 𝑍 
 

 

              +𝑓 𝛻𝑋 𝛻𝑌 𝑍 − 𝑌�𝑋(𝑓)�𝑍 −  𝑋(𝑓)𝛻𝑌 𝑍 
 

 

           −  𝑌(𝑓)𝛻𝑋 𝑍 −     𝑓  𝛻𝑌 𝛻𝑋 𝑍 − [𝑋,𝑌]𝑓.𝑍 
 
 

                                              −𝑓 𝛻[ 𝑋,𝑌 ] 𝑍 
  

  = �𝑋𝑌(𝑓)− 𝑌𝑋(𝑓)�𝑍 + 𝑓(𝛻𝑋 𝛻𝑌 𝑍−𝛻𝑌 𝛻𝑋 𝑍 
 

                                  −𝛻[ 𝑋,𝑌 ] 𝑍)− [𝑋,𝑌]𝑓.𝑍 
 

  = [𝑋,𝑌]𝑓.𝑍 + 𝑓 𝑅𝛻 (𝑋 ,𝑌,𝑍)− [𝑋,𝑌]𝑓.𝑍    
 
 =  𝑓 𝑅𝛻 (𝑋 ,𝑌,𝑍). 

 
Therefore,  𝑅𝛻  is a tensor of rank (1, 3). 
Hence completes the proof.       
     
VI. Levi-Civita connections 
Let 𝑀 be a smooth n-dimensional manifold, ℱ(𝑀) be the set of 
smooth functions, g be a smooth metric, 𝔛(𝑀) be the vector space 
of smooth vector fields and 𝛻 be an affine connection on  𝑀. 
Then the covariant derivative on g with respect to 𝛻 is a 
multilinear map, 
 
 𝛻g ∶  𝔛(𝑀)  × 𝔛(𝑀) × 𝔛(𝑀)   → ℱ(𝑀) 
 

                          ( 𝑍,𝑋 ,𝑌 )   ↦ 𝛻𝑍g(𝑋,𝑌)  
 
where   𝛻𝑍g(𝑋,𝑌) = 𝑍g(𝑋,𝑌) − g(𝛻𝑍𝑋,𝑌)− g(𝑋,𝛻𝑍𝑌) 
                                        
Definition 1.21 [7] Let M be a smooth manifold equipped with a 
smooth manifold metric  g. There is a unique affine connection 𝛻 
on g such that  
 
(a) 𝛻 is torsion free. 

 
(b) 𝛻g = 0 This unique connection is called Levi-Civita 

connection. 
 
Theorem 1.22 (The fundamental theorem of pseudo-Riemannian 
geometry) On a pseudo-Riemannian manifold (𝑀, g), there exists 
a unique symmetric connection (Levi-Civita connection) which is 
compatible with the metric g. 
  
Proof: Let 𝛾 be a tangent vector to an arbitrary curve along which 
the vectors are parallel transported. Then we have, 
 
0 = ∇𝛾[g(X, Y)] = γi[(∇i g)(X, Y)] + g(∇iX, Y) 
 

                                                 +g(X,∇iY) 
 

     = γi 𝑋𝑗𝑌𝑘(∇𝑖g)𝑗𝑘). 
 
where we have noted that ∇i X = ∇i Y = 0. Since this true for any 
curves and vectors, we must have 
 

(∇ig)jk = 0. 
 
For metric tensor we know, 
 

(∇ℓg)jk =
∂
∂xℓ

gjk − Γ ℓ j
i gik − Γ ℓ k

i gij. 
 
Now from the above, we can write as follows  
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∂
∂xℓ

gjk − Γ ℓ j
i gik − Γ ℓ k

i gij = 0   … …  … (1.02) 
 
Now using cyclic permutations of (ℓ, 𝑗,𝑘), we have 
∂
∂xj

gkℓ − Γ j k
i giℓ − Γ j ℓ 

i gik = 0 …  …   … (1.03) 
 
∂
∂xk

gℓj − Γ   kℓ  
i gij − Γ  kj

i giℓ = 0 … … … (1.04) 
 
The combination  −(1.02) + (1.03) + (1.04) yields 
 

−
∂
∂xℓ

gjk +
∂
∂xj

gkℓ +
∂
∂xk

gℓj + Τ ℓ j
i gik 

 
                        +Τ ℓ k

i gij − 2Γ (j k)
i giℓ = 0 …  …  … (1.05) 

 

where Τ ℓ j
i = 2Γ [ℓ j]

i = Γ ℓ j 
i − Γ j ℓ 

i  and  Γ (j k)
i = 1

2
�Γ kj 

i + Γ j k 
i �. The 

tensor Τ ℓ j
i  is anti-symmetric with respect to the lower indices  

Τ ℓ j
i = −Τ   j ℓ

i . 
 

By solving equation (1.05) for Γ (j k)
i , we have 
 

 Γ (j k)
i = �

i
j k�

+
1
2 �
Τ k  j
i + Τ  j k

i � … … …  (1.06) 
 

where � ij k� are the christoffel symbols defined by  
 

�
𝑖
𝑗 𝑘�

=
1
2

 𝑔𝑖 𝑙 �
𝜕𝑔𝑘 𝑙

𝜕xj
+
𝜕𝑔𝑗 𝑙

𝜕xk
−
𝜕𝑔𝑗 𝑘

𝜕xℓ
�…  … …  (1.07) 

                                                     
Finally, the connection coefficient  Γ is given by  
 
Γ  j k
i = Γ (j k)

i + Γ [j k]
i  

 

        = � 𝑖
𝑗 𝑘� + 1

2
�Τk   j

i + Τj   ki + Τ   j k
i �  … … … (1.08)   

                                                                                                                      
The second term of the last expression of (1.08) is called 
contorsion, denoted by  K   jk

i : 
 

𝐾   𝑗𝑘
𝑖 =

1
2

(Τk   j
i + Τj   ki + Τ   j k

i ) 
 
So,    

Γ𝑗 𝑘 
𝑖 = �

𝑖
𝑗 𝑘�

+𝐾 𝑗 𝑘 
𝑖  

 

Now,   Γ (𝑗 𝑘) 
𝑖 = Γ 𝑗 𝑘 

𝑖 + 𝑇 𝑗 𝑘 
𝑖  is the another connection coefficient 

if 𝑇 is a tensor field of type (1,2). Now we choose     
 

𝑇 𝑗 𝑘 
𝑖 = −𝐾 𝑗 𝑘 

𝑖  so that 
 

Γ 𝑗 𝑘 
𝑖 = �

𝑖
𝑗 𝑘�

 
 

        = 1
2

 𝑔𝑖 𝑙 �𝜕𝑔𝑙𝑘
𝜕𝑥𝑗

+ 𝜕𝑔𝑗 𝑙

𝜕𝑥𝑘
− 𝜕𝑔𝑗 𝑘

𝜕𝑥𝑙
�. 

 
By construction, this is symmetric and certainly unique given a 
metric.    
                       
Example 1.23 Let metric on ℝ2 in polar coordinates is  𝑔 =
𝑑𝑟 ⨂  𝑑𝑟 + 𝑟2𝑑𝜙 ⨂  𝑑𝜙. The non-vanishing components of the 

Levi-Civita connection coefficients are Γ 𝑟𝜙 
𝜙 = Γ 𝑟𝜆 

𝜙 =  𝑟−1 and 
Γ 𝜙𝜙 
𝑟 = −𝑟. 

  
Example 1.24 The induce map on 𝑆2 is 𝑔 = 𝑑𝜃⨂𝑑𝜃 +
𝑠𝑖𝑛2𝜃 𝑑𝜙 ⨂𝑑𝜙. the non-vanishing components of the Levi-
Civita connections are 
 

Γ 𝜙𝜙 
𝜃 = −𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 ; Γ 𝜃𝜙 

𝜙 = Γ 𝜙𝜃 
𝜙 = 𝑐𝑜𝑡𝜃. 

 
VII. Killing Vector Fields 
A Killing vector field is a vector field on a Riemannian manifold 
that preserves the metric. Killing fields are the infinitesimal 
generators of isometrics, that is, flows generated by Killing fields 
are continuous isometrics of the manifold.  
 
Definition 1.25 [9] A vector field 𝑋 is a Killing vector field if the 
Lie derivative with respect to 𝑋 of the metric 𝑔 vanishe 
 

ℒ𝑥𝑔 = 0. 
 

In terms of the Levi-Civita connection, this is 
 

𝑔( 𝛻𝑌 𝑋,𝑍) + 𝑔(𝑌,𝛻𝑍  𝑋) = 0 
 
for all vectors 𝑌 and 𝑍. In local coordinates, this amounts to the 
Killing equation 
 

𝛻𝑖𝑋𝑗 + 𝛻𝑗𝑋𝑖 = 0. 
 

This condition is expressed in covariant form. Therefore it is 
sufficient to establish it in a preferred coordinate system in order 
to have it hold in all coordinate systems. 
 
Examples 1.26 The vector field on a circle that points clockwise 
and has the same length at each point is a Killing vector field, 
since moving each point on the circle along this vector field 
simply rotates the circle. 
 
VIII. Conformal Killing Vector Fields 
The term of the conformal Killing vector field is an extension of 
the term of the Killing vector field. Conformal Killing vector 
fields scale the Metric around a smooth function, while Killing 
vector fields do not scale the Metric. The conformal Killing 
vectors are the infinitesimal generators of conformal 
transformations. 
 
Definition 1.27 [10] Let (𝑀,𝑔)  be a Riemannian manifold and 
𝑋 ∈ 𝔛(𝑀). Then the vector field 𝑋 is a conformal Killing vector 
field, if an infinitesimal displacement given by 𝜀 𝑋 generates 
a conformal transformation. 
 
Example 1.28 Let 𝑥𝑘 be the coordinates of (ℝ𝑚,𝛿). The vector  
                                         𝐷 = 𝑥𝑘 𝜕

𝜕𝑥𝑘
     

 is a conformal killing vector.  
 
IX. Conclusion  
The fundamental theorem of pseudo-Riemannian geometry is 
established using tensors on a manifold 𝑀. In this theorem, I have 
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used metric connection ∇ which is the natural generalization of 
the connection defined in the classical geometry of surfaces. The 
covariantly constant metric 𝑔𝑖𝑗  and vectors fields 𝑋 and 𝑌, which 
are parallel transported along any curve are used in this theorem.  
In this paper, I have tried to set different types of examples and 
the proof of various theorems in elaborate way so that it can be 
helpful for further analysis.   
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